

Abstract

The APAM (Accelerators of Particles for Medical Application) Laboratory in the ENEA-Frascati Research Center developed a prototype of a self-shielded device dedicated to the treatment of breast cancer with the patient in prone position. It consists of a rotating X-ray source, based on a compact 3 MeV electron accelerator, placed under the patient bed which is provided with a circular opening through which the breast hangs down and can be irradiated. The system has been designed to suitably screen the patient body from the underlying accelerator. This setup improves target coverage and gives a valuable advantage in sparing healthy tissues: prone position increases the separation of the target and critical organs and in addition minimizes target motion caused by breathing. The prototype has been developed in the framework of the TECHEA (TEChnology for HEAlth) Project aimed to the realization and validation of prototype systems for applications to health protection. The paper describes the apparatus and reports the results of the experimental characterization of the X-ray source done in collaboration with the Laboratory of Medical Physics and Expert Systems of Regina Elena Hospital.

TECHEA Project

The TECHEA (**TECHnology for HEAlth**) Project launched by ENEA aims to create a technological infrastructure for the development, construction and validation of system prototypes, based on physical technologies, for applications to protect

citizens' health.

The Project is divided in three WPs. WP2 is devoted to the development of a rotating and low-stray radiation X-ray source for prone breast treatment based on a compact electron accelerator.

Conceptual layout of the TECHEA Prone Breast Irradiation System.

The TECHEA PBS prototype in the test bunker at ENEA-Frascati

TECHEA-PBS (Prone Breast System)

 Parameter	
Rotation angle of the beam	
source	
Source-isocenter distance	
Treatment couch position	
Electron beam energy	
Dose rate at isocenter	
TPR20/10	
Maximum spot diameter	

Value

270°

60 cm

fixed

3 MeV

1.5 Gy/min

0.524

14 cm

Aims:

- Improve Target coverage
- Sparing of OAR
- Reduce of the overall treatment time
- Simplify of installation
- Reduce of undesired integral dose to patient
- Reduce of the overall costs of the Breast RT

Electron Linear accelerator and e-X converter

Parameter	Value	
Accelerating structure length	20.8 cm	
RF frequency	2998 MHz	
Number of accelerating cavities	4	
Length of accelerating cavities	22,44,48,48 mm	
Bore hole diameter	6 mm	
Injection energy	12-15 KeV	
Output energy (max.)	3 MeV	
Output pulse aurrent	120 m 1	

Pb collimator and shielding

Output puise current	120 MA	z (mm)		
Pulse duration	3.4 µsec	- ()	Amplitude(C4)	11.8333V
Repetition frequency	10-100 Hz	Design accelerating electric field	No Item No Item C1 DC1M	C2 DC50

3.00F+0

Cooling channel (liquid)

Cooling channel (air)

view of the lines (without externel

Front view of the linac (without external shielding) followed by the first shielding (open).

e-X converter

side W (400 µm thick) side Cu (1.6 mm thick)

Top view

The photon beam is collimated by a Pb conical collimator having an aperture of 13 degrees. A lead block ("dump") is positioned behind the nominal irradiation position (isocenter) to shield the x-rays traversing the target.

Dosimetry

Monitor Chamber (MC)

(Transmission chamber, PTW TM7862 model , 95 mm diameter)

X-ray characterization

The X-rays characteristics were investigated with EBT3 films, and the Semiflex ionization chamber respectively for lateral distribution measurements and PDD (Percentage Dose Depth) curves acquisition. A LUDLUM chamber (model 9DP) was used for environmental radiation measurements.

0.13

0.10

0.03

45°

Front view of the setup during the dosimetric inter-calibration measurements

Solid Water Phantom density=1.035 g/cm³ 20x20x1 cm³ slabs

From the prototype to the final device

The TECHEA prototype demonstrated the main features of a compact dedicated system for PB Irradiation. For an upgrade to an engineered clinical device:

- Fiber carbon couch
- Multileaf collimator
- Improving the shielding